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ANALYSIS OF AN INTERFACE CRACK FOR A FUNCTIONALLY GRADED

STRIP SANDWICHED BETWEEN TWO HOMOGENEOUS LAYERS OF

FINITE THICKNESS

N.I. Shbeeb and W.K. Binienda

University of Akron

Department of Civil Engineering

Akron, Ohio

Abstract - The interface crack problem for a composite layer that consists of a

homogeneous substrate, coating and a non-homogeneous interface was formulated for

singular integral equations with Cauchy kernels and integrated using the Lobatto-

Chebyshev collocation technique. Mixed-mode Stress Intensity Factors and Strain Energy

Release Rates were calculated. The Stress Intensity Factors were compared for accuracy

with relevant results previously published. The parametric studies were conducted for the

various thickness of each layer and for various non-homogeneity ratios. Particular

application to the Zirconia thermal barrier on steel substrate is demonstrated.
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1. INTRODUCTION

Advanced turbine systems and some aerospace applications require use of structural

ceramics to protect the hot sections. The thermomechanical mismatch between metal and

ceramics induces high residual stresses responsible for cracking and spallation. One way

of reduction of the residual stresses is accomplished by processing fully tailored materials

and interfacial zones with predetermined, continuously varying mechanical properties

known as Functionally Graded Materials (FGM) [ 1,2]. FGM could be described as two-

phase particulate composites where the volume fractions of its constituents differ

continuously in the thickness direction [3-6].

Erdogan in his paper [7] discussed the problem of crack growth in FGM due to

fatigue, creep and stress crack corrosion cracking, and fracture instability.

He concluded the following:

1. By eliminating the discontinuity in material property distributions, the

mathematical anomalies regarding the crack tip stress oscillations for the

interface cracks are eliminated. Hence, one can non, use the crack tip finite

element modeling developed for the ordinary square-root singularity and apply

the methods of the energy balance-based theories of the conventional fracture

mechanics.

2. Application _f FGM as interfacial zones in joining generally incompatible

materials would greatly improve the bonding strength.

3. Use of FGM as coatings and interfacial zones would reduce the magnitude of

the residual and thermal stresses.
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4. Use of FGM coatings and interfaces would eliminate the stress singularities at

the points of intersection of interfaces and stress-free ends in bonded materials.

5. Replacing homogeneous coatings by FGM layers would both enhance the

bonding strength and reduce the driving forces at the crack tips.

Delale and Erdogan [8] solved the crack problem for a nonhomogeneous plate. The

authors considered the plane elasticity problem in which the material is isotropic, has a

constant Poisson's ratio (v), and the Young's modulus (E) is of an exponential form

varying in the x-direction. They found that the Poisson's ratio did not have much effect

on the resulting stress intensity factors. They also found that the strain-energy release rate

of the crack embedded in the portion of the medium with higher stiffness is lower than

that corresponding to the crack tip in the less stiff side of the material. Hence, the crack

will grow in the direction of the less stiff material.

Delale and Erdogan [9] considered the interface crack in a nonhomogeneous elastic

medium. In this paper the interface crack between two bonded half planes was addressed.

One of the half planes was homogeneous while the other was nonhomogeneous in a

manner that the elastic properties are continuous throughout the plane and have

discontinuous derivatives along the interface. They assumed that the Young's modulus

and the Poisson's ratio are of the exponential form. They found that the singular behavior

of the stress state near the crack tip in the nonhomogeneous medium is identical to that in

a homogeneous material given that the spatial distribution of the material properties are

continuous near and at the crack tip.

Also, Delale and Erdogan [10] solved the crack problem for two bonded

dissimilar homogeneous elastic half-planes and assumed that the interfacial region, can
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be modeled by a very thin non-homogeneouslayer. The elastic propertiesof the

interfacialmaterialvariedcontinuouslybetweenthat of the two semi-infiniteplanes.It

wasassumedagainthat E andv areexponentiallydependentony. Varying thePoisson's

ratiodid not havemucheffecton thestressintensityfactors.TheAiry stressfunctionwas

usedin their formulationof the solutionin which it wasassumedthat it is composedof

two functions,oneis associatedwith an infinite planecontainingthecrackon thex-axis,

while the secondis an uncrackedstrip. Their resultsshowedthat if the crack location

approachesthelessstiff materialthestrainenergyreleaserateincreases.

Erdoganet al. [11] studiedtheperpendicularcrackto the interfacein abondednon-

homogeneousmaterial.The main goal was to study how the singularbehaviorof the

stressesandstressintensityfactorsis affectedby thevery steepvariationsin thematerial

propertiesnearthediffusion plane. Heretheyassumedthat theshearmodulus(la)varies

in anexponentialform.Theysuggestedthat:

1. Regardless of the mechanism of binding at the atomic level, in many cases there

is always a thermodynamically stable and readily distinguishable region

between the two homogeneous materials.

2. The interfacial regions are generally locations of higher concentration of stress

and micro-tqaws.

3. bt most material pairs the fracture toughness and the sub-critical crack growth

resistance of the interfacial zone tend to be lower than that of adjacent

homogenous materials.

They found that the nonhomogeneity constant [3 has a great effect on the stress

intensity factors. They showed that as 13increases so do the stress intensity factors.

NASA/CR-- 1999-208874 4



Erdogan and Ozturk [12] solved the mixed boundary value problem for a non-

homogeneous medium bonded to a rigid subspace. They investigated a two-dimensional

diffusion problem in which the interface contains a plane crack. Rather than solving the

problem for a given material, they used an inverse method. This inverse method provided

the material constitutive behavior for which the mixed boundary value problem could be

solved.

One year later, Erdogan and Ozturk [13] studied the axisymmetric crack problem in

a non-homogeneous medium. They noticed that the crack opening displacement in non-

homogeneous materials was significantly greater than the corresponding homogeneous

values.

Later Konda and Erdogan [14] considered the mixed mode crack problem in a non-

homogeneous elastic medium. The crack was arbitrarily oriented with respect to the

direction of the property gradient. The effect of the variation of the Poisson's ratio was

neglected in the solution because of previous studies.

Erdogan and Wu [15] studied the crack problem in FGM layers under thermal

stresses. They considered an unconstrained elastic layer under statically self-equilibrating

thermal or residual stresses. The layer contained an embedded or surface crack

perpendicular to its boundaries. After giving the distribution of thermal stresses, the stress

intensity factors for the embedded and surface crack were presented along with the

results of the crack/contact problem in a FGM layer that was under compression near and

at the surface and tension in the interior region.

Chen and Erdogan [16] solved the interface crack problem for a nonhomogeneous

ceramics coating bonded to a homogenous metallic substrate using displacement

NAS A/CR-- 1999-208874 5



formulation. It was concluded in this work that the dominant mode of the stress intensity

factor is Mode I, and it decreases as the nonhomogeneity constant changes from soft to

stiff under uniform normal stress. A similar trend was noticed for Mode II, under uniform

shear stress. Decreasing the thickness of either material increased the stress intensity

factors.

In this work the problem described in Chen and Erdogan [16] will be extended to

include the third thin layer of homogeneous ceramics material to increase thermal

protection of the metallic substrate. As shown by Kokini and Choule [17], thermal

barriers always include some thickness of pure ceramics material. The scope of this work

includes an examination of debonding of ceramics layers from the substrate. In particular,

the stress intensity factors (SIF) and strain energy release rates (SERR) are obtained

using the Airy stress function formulation for the interface crack embedded between the

finite thickness substrate and the non-homogeneous strip, which is sandwiched between

the substrate layer and thin homogeneous layer. It is assumed that the FGM has a

constant Poisson's ratio and the shear modulus is of an exponential form. Plane elasticity

is assumed and the solution is valid for both plane stress and plane strain.
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2. FORMULATION

The geometry of the problem is shown in Figure 1. Both the substrate and the

coating, which are perfectly bonded to the FGM, are isotropic and homogeneous, and

have hi and h3 as their respective thickness. The FGM thickness is h2, and is denoted as

material 2.

In the global x-y coordinates the shear modulus of the FGM is assumed to be as

follows:

_2(Y) = _, er' (1)

where

7=lln( g3 ) (2)
h2 _

Hooke's law relates strain and stress using two independent material constants:

o_u 1
e,(x,y)= - [(K'+I_, +(_'-3)cr ]

3 x 8tl

Ov 1 . 1)0",, ]-
8y 8_

10u Ov ) 1
e,,(x,y)=_(--+•ay 7x =2-_ r''

(3)

where u and v are horizontal and vertical displacements, and g is defined as:

_¢= 3 - 4v for plane strain

3--V
t¢ - for plane stress

l+v
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The Airy stress function F(x,y) is defined by

o',,(x,y)-

cr,_,.(x, y)=

r.,,.(x, y) =

O2F(x,y)

O V2
.1

O2F(x,y)

02F(x,y)

OxO y

By incorporating (4) and the strain-stress relations in the following

equation:

a2e. a2e,_ on2e,.,
•-+ 2

O x 2 03, 2 O xO y
-0

we obtain the fourth order governing equation for F(x,y):

84F_(x,y) +28aF_(x,y) _ 84F_(x'Y )

Ox 4 3 x2a y2 3 3,4

(4)

compatibility

(5)

- 0 (6)

The solution of (6) is found by applying the Fourier Transform:

V(o_, y) = i Ft (x, y)e-'°"dx (7)

that transforms (6) into 4-th order Ordinary Differential Equation (ODE) with

constant coefficients. The ODE is solved by forming the characteristic equation to

determine its roots:

o_4V_2a2d2V d4V=o
6/3,---T+ dy4

zz_ W 4 --20C2W 2 +_4 =0

W I =14' 3 = 0¢ &14'_ =W 4 =--a

(8)
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Thus, the stress function for the substrate has a form with double repeated roots as follows:

F_ (x, y) = _ [(D_ (a) + yD 2(a))e I_1) + (D 3 (_) + yD4 (o0)e -1'4_] e'"'_do_
(9)

Similarly, for the coating,

G (x, y) = _ [(C_ (a) + yC 2 (a))e I<_ + (C 3(a) + yC 4 (_))e -I_1'] e'"_da

The governing equation for the FGM is:

V2(a_, +a,.,) 7- a._., +-=---a,. -2 7 (a,., +0" )=0
" t¢2+1 cry

_V4F,(x,v)+72 c}-F2(x'Y) 4 _= _'- . _27 V2F,(x,y)=0
- " oly - _,+I _ff_2 .] ay -

The characteristic equation of ( 11 ) becomes,

4 _ _7, t¢_-3m -2'ym 3 +(y2 _20(,2)!112 +2),O_2m+(a4 _- - ---=_) =0
/¢,+1

(10)

(11)

(12)

There are four independent roots of (12):

z7 la_ 7 -_ • I3-_c,m, ==- +-= + wey, l -- -.
4 VK2 +1

_ iO_ 2 . .,[3-/%+in,-_ _--- "1- 2 + Y- +U::ZTV 7¢74

I . /5-,:2m, = r___ +r- -,,ml-- +-12 4 V_c:

I 72 . 13-,c2ma =-Y2+ a 2 +-7--,azlJTcT+]

Consequently, the stress function is obtained in the following form:

(13)

(x, y) = _ [A, (a)e'"" + A 2 (a)e '''_' + A 3 (a)e""' + A 4(a)e ''_'] e"'_da
(14)
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Using (4) the stresses for the FGM are:

1 i 2 tn_ v "_ nl, _ _ 2 nl 4 vO[(,_'(x,y) =_--_- [m, Ale - +mZ_A2e " +m3A3e ''''v +m4A4e ]ei_'_do_

O'., (x, .V) = ----2R"-_OE2[A'e"" + A'e"'>- + A3e"' + A_e"_"]ei"_d°t

r_2_, , 1 iiot[m_A_e""' +m_A,e"':' +maA_e"' +m4A4 e'''_v ] e'"_dot
,, tx,)_- 2zr__ - -

(15)

the stresses for the substrate are:

. t x, y) = _ [(a 2 (D_ + yD 2 ) + 2 ot D 2 ) e I_t: + (Or2(D3 + yD4 ) _ 2 o_ D 4 )e-I_l, ]e'__ dot

,, tx, y) - 2n" Ia2 [(Dj + yD 2 )] e I'll' + (D 3 + yD 4)] e -I'_1']e_"_do_

r "_',,tx, .v) - 2n'l -_iia[(°: (D_ +yD,_)+D2)ek, i_ + (-a (D3 +yD4)+D4)e_l<,]en,_do _

(16)

and for the coating they are as follows:

,., (x, y) = _ [(o_2(C, + yC 2) + 2or C 2)e >1' + (o_2 (C 3 + yC 4 ) - 2_ C 4 )e -I'll' ]e"'_dot

O._3_(x, 3,) _ 1 i_2[(C _ + vC,)]el,_l, +(C_ +yC._)e-I'_l']e"'_do_
" 2tr __ " "

r'f (x, y) - 1 ii_x[(a(C, + vC,)+C,)el<, +(-]a(C_ + YC4)+C4)e-I'_l"]#"_da
21r ....

(17)

From (15), (16) and (17), it can be seen that there are 12 unknown constants (in the

Fourier space they are functions of o0, i.e., Di, Ci and Ai (i= 1...4), which can be obtained

from the following conditions:

(y[_,.'(x,-h,) =O,_[l'(x,-h,)=0

(2) B. ,lf 0 (2) ,.t. (I) ,,a,, (x,O) o,, (.,), r,, (x,O)= tx,o)
_(3)z

-_3_(x, h2 +h 3) = 0,27_. r tx, h2 +h3) =0o w

c_'(x,h_)-'2'(x, h2) al,_'(x,h_r_2'(x,h,) r,.,

u'2' (x, h2 ) = HI3' (x, h2 ), vl2_ (x, h2 ) = v(3) (x, h2 )

(18)
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and the following mixed boundary conditions:

12, + -_21'x 0 +_ (19a,b)Oyy(X,O )=pl(x),'rxyt , j=p2(x), -a<x<a

u'2_(x,O+)-u_'_(x,O-)=O, v_-_(x,O+)-v_'(x,O-)=O Ixt>a (20a,b)

where p_ and P2 are known surface tractions. In order to convert the solution from a dual

integral path into a singular integral equations, (20a,b) has to be replaced by the

following auxiliary functions:

0 [U_2_(X,0+)_Ut,,(X,0_)]=f,(x) ....... co<X<OO

3x (21a,b)

3 [v_2,(x,0+)_v_,,(x,0 )]=f,(x) ....... _<x<,,o
Ox

Consequently, all twelve unknowns are determined in terms of the auxiliary

functions, fl(x) and f2(x), by using (18) and (21). The unknown auxiliary functions are

solved by using (19). After some lengthy manipulations the following singular integral

equation (SIE) was reached. For details see [ 18],

g'(1 + K_)(I + K2) 'i_ '[ 'i
_l(2+tcl+t¢2) (-p_(x))= t+ f_(t)Kl_(X,t)+ f2(t)Kl2(X,t)__,t-x _, -.

rO,(5+5w_+t¢_+tc_(2+t¢,)+G(6+4tG))f(t x)" -

-_ -_+_(i-_ - - "--r---_' f2(t)d'+K2)(2+K" I +K 2) L I,- 1

y(l - g 2 - w_ + 2K, (2 + K2) + g_ (2 + K" 2 )) I Ci(U (t - x))f_ (t)dt
2(1 +/¢1 )(1 + t¢2)(2 + tel + K2) _,,

/r(1 +/¢')(1 + t¢2) (-p2 (x)) = t+ (t)Ke,(X,t)+ t)K=(x,t)
/.q (2 + G +t¢_) _ t-x

- --¢1 --a -tl

-t- _'7(1 + 2t¢2 +t¢2 + t¢_(2 + K'2)+ K'_(2 + _'2)) .... f_(t)dt
2(1 + G)(I+ t¢2)(2+ G +t¢2)

y(1 - t¢2 - t¢_ + 2 G (2 + t¢2) + to,2(2 + a', )) 'i
Ci(U+ (t x))f2 ( t )dt

J2(1 + K'_)(1+ K2)(2+ K"_+x" 2) ,,

(22)
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where,

K_(x,t) = (l+G)(l+r 2){i(x,, ' _x_,)isin(offt_x))da+
2(2+_t +rf 2) o

'i +x'"(x_ +xj_,- +tq)(l+t¢_) v
0

2( to, -to, "y(l + 4x'l +2t¢_ -t¢_ + 2x'_x'_ + r_t¢_ -_¢_))cos(a(t-x))dot}
(l+G)(l+r 2) 2a(l+tq)2(l+K'2) 2

(23)

i 2+_:_ +K_K_2(x,t)=(l+Kt)(l+K'){ (x_2 _-xj2+2i((l+Kj)(l+K,)
2(2+_:_ +K 2) o

y(5 +6K, +2K_ +5K 2 +4KIK 2 +K_K 2+ K22) isin(@(t_ x))do_
)220t(l + _C_)2 (1 + K,

+ ;(x,_ + xt2 _) cos(0c(t - x))do_}
0

(24)

i 2 + K I -I- K 2(I+K:_)(I+K2){ (x2_ _-x2_+2i((I+K,)(I+K,)K_,_(x,t)= 2(2+K, +K_) o

T(1 + 2K, +2K_ + K2 + K_K 2+ K22)isin(@(t- x))do_
2ot(l + K_)2(1 + K2)2

+ i(x2, + x,__, )cos(ot(t - x))dot}
0

(25)

(1 + K_)(1 + K, ) {i(x 2_ _ x22 ) i sin(ot(t - x))do_ +
K22(x't)= 2(2+KI +K2) o

u ix::+x:._-2( K,-K. ).))cos(0fft-x))dot+ (xt_+xtt_o (1+ K, )(1 + K2 u

-2( _, -K 2 7(1+4K, +2K_ -K_ +2K, K2 +K_K2--K_))COS(a( t_x))doq
_ )-_(1+ _q)(l+ K,) 2or(1 + _ (I+K2) 2

(26)
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x,, =-a2( Q'' Q21 + Q3, Q4,)
Q Q Q Q

X22

Xl It

X2 h

x,2=-a2(-Q_2 + Q22 Q32+Qa2)
Q Q Q Q

__ Q_I + _ m4x21 =_io_(ml Qll -m, - m 3Q --d-'

=-ia(-m, Qi2 + m_ Q22 m Q._2 + m Q42)

= conjugate(x,_ ), Xlz` = conjugate(xl2 )

= conjugate(x2_ ), X2zc = conjugate(x22 )

(27)

Ci(U(t-x_))=(C 0+logU(t-xj) +

]U(t-xl 1[

I c°sl3- ld13)
0 13

(28)

Co is the Euler constant, whereas U is the upper limit beyond which the cosine

integral, Ci, is negligible. Q is the determinant of the 4 by 4 coefficient matrix and Qij are

the corresponding 3 by 3 cofactors. Both can be found in the Appendix.
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3. SINGULAR INTEGRAL EQUATIONS SOLUTION

singular integral equations (22) contain Cauchy kernels. In order to obtainThe

unique results the following conditions need to be incorporated into the solution.

if, (t)dt = 0 ...... i = 1,2 (29)
-a

The system of equations (22) and (29) can be solved together using the Gauss

quadrature method. For example, using, the Lobatto-Chebyshev collocation method was

shown in [ 19] to produce accurate results for the above type of equations. In practice the

auxiliary functions are discretized at particular points tk, integration is replaced by a

summation, and the system of linear algebraic equations are obtained for collocation

points Xp (Xp is never the same as tk) in the following form:

_ _..z kij(Xl,,tk)gj(t,)Wk +R,,(xp)= f_(x_,) (30)
I=1 it. k=l I k -- Xp j=l k=l

where p= 1..... n, wk is the weighting coefficient, and Rn is a remainder that becomes small

for sufficiently large number of points tk. According to the aforementioned technique, the

abscissas are calculated according to:

tk =cos((k-l)lr) ...... k = 1..... n. (31)
n-1

r = 2 ..... n - 1. (32)

The corresponding weights are:

7r 7r

W1 = W n = ;W r --
2(n - 1) n - 1

(33)

The collocation points can be found from:

xp = cos( (2p - l)n').
2n-2 ..... p=l ..... n-l.
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The remaining two equations are generated using (29) in the following form:

n

Egl(s*)% =0
k=l

tl

Eg2(sk)% = 0
k=l

(34)

By incorporating (30), (34) and (33) together, the system of equations can be represented

as follows:

[A Ja,,x 2,,{g }2, : {P}2,, (35)

thus. the unknowns are obtained by:

{g }= [A]-' {P} (36)

The mode-I and mode-II SIF are defined as follows:

k_ (a) = lim x/2(x, - a)Gy,y, (x, ,0)
xl -_)a

k2(a ) = lim x/2(x I -a)'rx,:, (x, ,0)
xl ---)a

(37)

From the principal part of the expressions for g_(t) and g2(t) as shown in [20], the

following are obtained for kl(a) and k2(a):

I.tl (2 + K_ + K2) g, (a) (38)
k, (a) = (1 + _:, )(1 + _2 )_/7 -

k2(a) = la_(2+ K:_+ K:,):'r- g, (a) (39)

(1 + K_)(1 + _¢,)4a

Where gl(a) and g2(a) correspond to g l(l) and g2(1) respectively when solving (36).

The strain energy release rates (SERR) can be calculated from [16], and they are

listed as follows:

G l(a) - a'(t¢2 + 1) k, (a) 2
8/4

G2(a) _ zr(t¢ 2 +1) k2(a)2
8/1,

(40)
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where G_ and G2 are the opening mode and sliding mode SERR, respectively. The total

SERR is expressed as:

Gr(a ) _ to(to 2 + 1) (k, (a) 2 +ke(a) 2) (41)
8_,

Before performing the parametric study the above solution should be verified with an

existing solution close to the proposed problem. The verification is accomplished by

comparing the results of our model with that of [16] by letting h3 approach zero and ],a

(the normalized non-homogeneity constant with respect to the crack length) taking the

values as shown in the Table I.

The values were obtained for h_=2a, h2=a, v_= v2= v3= 0.3 under loading of uniform

normal stress. The results in Table 1 demonstrate the accuracy of the solution.

4. RESULTS

The geometry of the problem being examined is shown in Figure 1. The thickness

of each layer is normalized with respect to the half-length of the crack "a" located at the

interface between the substrate layer and FGM. The homogeneous substrate, material

"1", may be stiffer or softer with respect to the homogeneous layer of ceramics, material

"3". The normalized nonhomogeneity constant 7a is varied between -3 and 3, which

covers most of the practical cases. The results are calculated for normalized mode-I and

mode-II SIFs, i.e., k_/ko and k2/1%, and normalized SERR, i.e., GJG0 and G2/G0, where

k o = cr _c and G o - 8/'t°k_ . The results are calculated for two loading conditions,
n'(K_, + 1)

namely unit normal stress in y direction and unit shear stress in x-y plane. The Poisson's

ratio is assumed to be v = 0.3 for each layer.

NASA/CR-- 1999-208874 16



First, the influence of the additional ceramics layer will be examined in order to

determine if there is any advantage to fabricate a thermal barrier with pure ceramics on

top of the FGM layer. Figures 2 and 3 show normalized total SERR versus the thickness

of the homogeneous ceramic layer h3 produced by normal stress and shear stress,

respectively. The thickness of the substrate is assumed 4 times higher than the thickness

of the FGM. The crack length is assumed to be the same as the thickness of FGM layer.

It can be noticed that SERR is significantly reduced even by a small additional

thickness of the ceramics material. The rate of reduction is the highest for h3 below 0.5a

for h3 larger than 3a, the influence is negligible. The largest reduction is produced for the

negative nonhomogeneity constant when the stiffness of the ceramics material is smaller

than the substrate. The smallest reduction is in the case of the stiffer ceramic material.

The homogeneous case is obtained for ),a = 0 and its SERR curve is located in between

the other two cases shown. One can conclude that the small change of the thickness of the

layer above the crack can significantly reduce the SERR. It can be recommended that the

optimum thickness of the ceramics layer should be about half of the thickness of the

FGM layer.

Using the above recommendation we can compare the SERR with the results

obtained by Chert and Erdogan (1996) indicated in the following figures by h3 = 0 (this

case is also the limiting case of our model). Figures 4, 5 and 6 are generated for the case

of the normal applied stress for three different thickness of the FGM layer. The thickness

of the substrate is assumed to be very large. Comparison of the curves with the additional

layer of ceramics and without that layer (h3 = 0) shows that the ceramics layer reduces the

SERR for each case, but the most significant reduction is for the thinnest FGM layer. In
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all cases,themagnitudeof G, kl andk2decreasesasthe stiffnessof the ceramicslayer

increases.

Figures7-9 showSERRandSIF for the caseof the appliedshearstressfor the

samegeometricalandmaterialconditionsas in theFigures4-6. Similarly asfor normal

applied stress,G, kl and k2decreasewith the increasingnonhomogeneityconstant.For

thecaseof thesoftestceramiclayer,additionalthicknessh3= 0.125aof thehomogeneous

layeraddedto 0.25athick FGM reducesG, kl andk2asmuchasincreasingthethickness

from 0.25ato 0.5aof theFGM. Hence,eitherincreasingtheFGM thicknessor increasing

theceramiclayercanreducetheSIFandSERR.

Figures 10and 11 show the normalizedtotal SERRgeneratedby normal and

shearstresses,respectively,versusthenonhomogeneityconstantfor thevariousthickness

of thesubstrate.Thereductionof the SERRby increasingthicknessof theceramiclayer

is equallysignificantto eachthicknessof thesubstrate.Thecasesfor hi = 10aandhi = 4a

overlapfor the appliednormalstressand theyarealmostidenticalfor the appliedshear

stress.As in the previouscases,the stiffnessratio of the ceramicscoatingto substrate

significantlychangestheSERR,especiallyfor thethin layerof thesubstrate.

Mode-I is dominantunder normal stresstractions. A questionariseswhat is

betterundersuchloadingconditions:thickerFGM layerwithout anyhomogeneouslayer

of ceramicsor thinnerFGM with h3makingthedifference.In the last parametricstudy

we will assumethatthetotal thicknessof the FGM andhomogeneousceramiccoatingis

constant.Theresultsof SERRareplottedwith respectto ln(la3/lal)in Figure12.

It canbenoticedthatfor increasingln(_3/_tj)the SERRdecreases.ThehighestG

is for themostnegativeln(_t3/_l).By replacingpartof FGM by pureceramicmaterialwe
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increase G for ln(g3/gj)=-2 (the region above the crack is softened by the softer ceramics

layer) and decrease G slightly for ln(g._/lul)=2 (the region above the crack is stiffened by

the stiffer ceramics layer).

Hence, it can be concluded that SERR can be reduced by several methods: stiffer

coating application, thicker FGM layer, and additional layer of homogeneous ceramics.

The most optimum combination depends on the stiffness ratio of the ceramics with

respect to the substrate.

Let's apply the above knowledge to the specific cases shown in Figure 13 (also

discussed in [17]). The substrate material is steel. Zirconia is used for the ceramic

coating. The FGM is made by gradual change from 100 % of Zirconia to

Zirconia/CoCrAIY to the bond coat attached to the substrate. In case (a), there are 50/50

of Zirconia/CoCrA1Y layer and bond layer sandwiched between pure ceramics and

substrate material. In case (b), there are four layers of Zirconia/CoCrA1Y, i.e., 75/25,

50/50, 25/75, and bond layer sandwiched between pure ceramics and substrate material.

The properties of materials are taken from [21]. For Zirconia they are: E3 = 36

GPa and v3 = 0.2, while for steel they are: El = 207 GPa and vl = 0.33. The thickness of

each layer can be normalized with respect to crack length, which is assumed to be the

same as half of the total thermal barrier thickness, i.e., ht = h2+h3 = a. The thickness of

the substrate is hi = 6a.

Table II shows results for three different cases under normal stress conditions. In

the first case the ceramic layer is part of the FGM. In the second and third cases the pure

ceramic layer belongs to material "3" and FGM thickness is measured from the interfaces

between steel and bond coat to the interface between Zirconia and FGM layer. It can be
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noticedthat thetotal SERRis higherin the lower two casesthan it is in the first caseby

16%and38%,respectively.Hence,it is critical how FGM is definedin thepracticalcase

studies.It can be also noticed that the thinner Zirconia layer producedsmaller SERR

becauseof the negativenonhomogeneityratio as describedin Figure 12.Finally, the

resultsshowsomesensitivityto theFGM Poisson'sratio,but for all practicalpurposesit

canbeassumedto bethesameasfor thepureceramics.
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Table I

Verification of the model

ya

-3.0

-2.5

-2.0

-1.5

-1.25

kl(a)/(_o4a)

Chen and

Erdogan

(1996)

2.430

2.252

2.087

1.936

1.866

k l(a)/(_ox/a)

Present

study

2.428

2.251

2.087

1.936

1.866

k2(a)/(Cyo4a)

Chen and

Erdogan

(1996)

-0.681

-0.571

-0.471

-0.379

-0.336

k2(a)/(_o'_a)

Present

study

-0.624

-0.533

-0.445

-0.364

-0.325

- 1.0 1.799 1.799 -0.296 -0.288

-0.75 1.735 1.735 -0.258 -0.252

-0.5 1.675 1.675 -0.221 -0.218

-0.25 1.618 1.618 -0.187 -0.186

-0.01

0.25

1.566

1.514

-0. 156

-0.125

1.566

1.514

-0.155

-0.126

0.5 1.466 1.466 -0.096 -0.099

0.75 1.422 1.422 -0.069 -0.072

1.0 1.380 1.379 -0.044 -0.048

1.5 1.304 1.303

2.0 1.237 1.237

2.5 1.179 1.178

3.0 1.128 1.127

0.002 0.003

0.042 0.036

0.077 0.070

0.108 0.100
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Table II

SIF and SERR for Zirconia thermal barrier and steel substrate.

Geometry and k t(a) k2(a) Gr(a)
Material

Property V2=V3 V2=VI V2=V3 V2 =V I V2"V3 V2=VI

ht=a, hz=a, h3=0

ln(la3/_tt )=- 1.646

ya=- 1.646

ht=a, h2=0.771 a,

h3=0.229a

ln(la3/gl)= - 1.646

',{a=-2.135

ht=a, h_.=0.545a,

h3=0.455a

ln(la3/_tl)= - 1.646

"/a=-3.021

1.9471 1.9178

2.0905 2.0336

2.243 2.1690

0.4102

.4827

.5565

0.2888

.3190

.3448

3.9598

4.6033

5.3389

3.7613

4.2371

4.8236

mL
/

h3

f
/

h

/

-_ Y

FGM la2(y)=

P-t _-
K2

k

Substrate gl x'Nx X
KI /

Figure 1. Geometry of the interface crack for a functionally graded layer sandwiched

between the homogeneous substrate and coating materials.
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Figure 2. Influence of h3/a on the total SERR for h_/a=4.0 and h2/a=l.0

under loading of uniform normal stress.

1.6

1.4 + ?a=-3.0
ya=-O.O l
ya=3.0

©_- 1.2

0.8

0.6 •

0 0.5 1 1.5 2 2.5 3 3.5 4

h/a

Figure 3. Influence of h3/a on the total SERR for hi/a=4.0 and h2/a=1.0

under loading of uniform shear stress.
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Figure 4. Influence of h2/a and h3/a on the total normalized SERR for hi/a= 100.0

under loading of uniform normal stress.
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Figure 5. Influence of hz/a and h3/a on the normalized mode I SIF for hj/a=lO0.O

under loading of uniform normal stress.
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Figure 6. Influence of h2/a and h3/a on the normalized mode II SIF for h]/a=lO0.O

under loading of uniform normal stress.
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Figure 7. Influence of h2/a and h3/a on the total normalized SERR for h_/a= 100.0

under loading of uniform shear stress.
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Figure 8. Influence of h2/a and h3/a on the normalized mode I SIF for h_/a=lO0.0

under loading of uniform shear stress.
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Figure 9. Influence of h2/a and h3/a on the normalized mode II SIF for hj/a=100.0

under loading of uniform shear stress.
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Figure 10. Influence of hl/a and h3/a on the total normalized SERR for h2/a=l.O

under loading of uniform normal stress.
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Figure 11. Influence of h_/a and h3/a on the total normalized SERR for hz/a=1.0

under loading of uniform shear stress.
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Figure 13. Geometry of the Zirconia thermal barrier on steel substrate (from Kokini and

Choules (1995)), (a) two layer FGM, (b) four layer FGM.
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APPENDIX
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